Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Cent Sci ; 7(12): 1980-1985, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34963891

RESUMO

Molnupiravir (MK-4482) is an investigational antiviral agent that is under development for the treatment of COVID-19. Given the potential high demand and urgency for this compound, it was critical to develop a short and sustainable synthesis from simple raw materials that would minimize the time needed to manufacture and supply molnupiravir. The route reported here is enabled through the invention of a novel biocatalytic cascade featuring an engineered ribosyl-1-kinase and uridine phosphorylase. These engineered enzymes were deployed with a pyruvate-oxidase-enabled phosphate recycling strategy. Compared to the initial route, this synthesis of molnupiravir is 70% shorter and approximately 7-fold higher yielding. Looking forward, the biocatalytic approach to molnupiravir outlined here is anticipated to have broad applications for streamlining the synthesis of nucleosides in general.

2.
Genome Res ; 31(8): 1498-1511, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34183452

RESUMO

Dictyostelium development begins with single-cell starvation and ends with multicellular fruiting bodies. Developmental morphogenesis is accompanied by sweeping transcriptional changes, encompassing nearly half of the 13,000 genes in the genome. We performed time-series RNA-sequencing analyses of the wild type and 20 mutants to explore the relationships between transcription and morphogenesis. These strains show developmental arrest at different stages, accelerated development, or atypical morphologies. Considering eight major morphological transitions, we identified 1371 milestone genes whose expression changes sharply between consecutive transitions. We also identified 1099 genes as members of 21 regulons, which are groups of genes that remain coordinately regulated despite the genetic, temporal, and developmental perturbations. The gene annotations in these groups validate known transitions and reveal new developmental events. For example, DNA replication genes are tightly coregulated with cell division genes, so they are expressed in mid-development although chromosomal DNA is not replicated. Our data set includes 486 transcriptional profiles that can help identify new relationships between transcription and development and improve gene annotations. We show its utility by showing that cycles of aggregation and disaggregation in allorecognition-defective mutants involve dedifferentiation. We also show sensitivity to genetic and developmental conditions in two commonly used actin genes, act6 and act15, and robustness of the coaA gene. Finally, we propose that gpdA is a better mRNA quantitation standard because it is less sensitive to external conditions than commonly used standards. The data set is available for democratized exploration through the web application dictyExpress and the data mining environment Orange.


Assuntos
Dictyostelium , Dictyostelium/genética , Morfogênese , RNA Mensageiro/metabolismo , Regulon , Software
3.
Mol Syst Biol ; 16(7): e9427, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32657546

RESUMO

Programmable gene activation enables fine-tuned regulation of endogenous and synthetic gene circuits to control cellular behavior. While CRISPR-Cas-mediated gene activation has been extensively developed for eukaryotic systems, similar strategies have been difficult to implement in bacteria. Here, we present a generalizable platform for screening and selection of functional bacterial CRISPR-Cas transcription activators. Using this platform, we identified a novel CRISPR activator, dCas9-AsiA, that could activate gene expression by more than 200-fold across genomic and plasmid targets with diverse promoters after directed evolution. The evolved dCas9-AsiA can simultaneously mediate activation and repression of bacterial regulons in E. coli. We further identified hundreds of promoters with varying basal expression that could be induced by dCas9-AsiA, which provides a rich resource of genetic parts for inducible gene activation. Finally, we show that dCas9-AsiA can be ported to other bacteria of clinical and bioindustrial relevance, thus enabling bacterial CRISPRa in more application areas. This work expands the toolbox for programmable gene regulation in bacteria and provides a useful resource for future engineering of other bacterial CRISPR-based gene regulators.


Assuntos
Sistemas CRISPR-Cas/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Engenharia de Proteínas/métodos , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/efeitos dos fármacos , Evolução Molecular Direcionada , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/genética , Biblioteca Gênica , Genes Reporter/efeitos dos fármacos , Genes Reporter/genética , Regiões Promotoras Genéticas , RNA Guia de Cinetoplastídeos/genética , Alinhamento de Sequência , Software , Fatores de Transcrição/química , Fatores de Transcrição/genética , Proteínas Virais/química , Proteínas Virais/genética
4.
Science ; 365(6453): 595-598, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31395784

RESUMO

In synthetic biology, methods for stabilizing genetically engineered functions and confining recombinant DNA to intended hosts are necessary to cope with natural mutation accumulation and pervasive lateral gene flow. We present a generalizable strategy to preserve and constrain genetic information through the computational design of overlapping genes. Overlapping a sequence with an essential gene altered its fitness landscape and produced a constrained evolutionary path, even for synonymous mutations. Embedding a toxin gene in a gene of interest restricted its horizontal propagation. We further demonstrated a multiplex and scalable approach to build and test >7500 overlapping sequence designs, yielding functional yet highly divergent variants from natural homologs. This work enables deeper exploration of natural and engineered overlapping genes and facilitates enhanced genetic stability and biocontainment in emerging applications.


Assuntos
Genes Essenciais , Homologia de Genes , Engenharia Genética/métodos , Aptidão Genética , Instabilidade Genômica , Proteínas de Bactérias/genética , DNA Recombinante , Mutagênese , Mutação Silenciosa , Biologia Sintética , Treonina Desidratase/genética
5.
Nat Commun ; 6: 7144, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-26018043

RESUMO

Kin recognition, the ability to distinguish kin from non-kin, can facilitate cooperation between relatives. Evolutionary theory predicts that polymorphism in recognition cues, which is essential for effective recognition, would be unstable. Individuals carrying rare recognition cues would benefit less from social interactions than individuals with common cues, leading to loss of the genetic-cue diversity. We test this evolutionary hypothesis in Dictyostelium discoideum, which forms multicellular fruiting bodies by aggregation and utilizes two polymorphic membrane proteins to facilitate preferential cooperation. Surprisingly, we find that rare recognition variants are tolerated and maintain their frequencies among incompatible majority during development. Although the rare variants are initially excluded from the aggregates, they subsequently rejoin the aggregate and produce spores. Social cheating is also refrained in late development, thus limiting the cost of chimerism. Our results suggest a potential mechanism to sustain the evolutionary stability of kin-recognition genes and to suppress cheating.


Assuntos
Dictyostelium/genética , Carpóforos/genética , Variação Genética , Proteínas de Membrana/genética , Interações Microbianas , Proteínas de Protozoários/genética , Evolução Biológica , Sinais (Psicologia) , Dictyostelium/metabolismo , Carpóforos/metabolismo , Proteínas de Membrana/metabolismo , Polimorfismo Genético , Proteínas de Protozoários/metabolismo , Esporos de Protozoários
6.
Curr Biol ; 23(16): 1590-5, 2013 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-23910661

RESUMO

The evolution of sociality and altruism is enigmatic because cooperators are constantly threatened by cheaters who benefit from cooperation without incurring its full cost [1, 2]. Kin recognition is the ability to recognize and cooperate with genetically close relatives. It has also been proposed as a potential mechanism that limits cheating [3, 4], but there has been no direct experimental support for that possibility. Here we show that kin recognition protects cooperators against cheaters. The social amoebae Dictyostelium discoideum cooperate by forming multicellular aggregates that develop into fruiting bodies of viable spores and dead stalk cells. Cheaters preferentially differentiate into spores while their victims die as stalk cells in chimeric aggregates. We engineered syngeneic cheaters and victims that differed only in their kin-recognition genes, tgrB1 and tgrC1, and in a single cheater allele and found that the victims escaped exploitation by different types of nonkin cheaters. This protection depends on kin-recognition-mediated segregation because it is compromised when we disrupt strain segregation. These findings provide direct evidence for the role of kin recognition in cheater control and suggest a mechanism for the maintenance of stable cooperative systems.


Assuntos
Evolução Biológica , Dictyostelium/genética , Proteínas de Membrana/genética , Proteínas de Protozoários/genética , Dictyostelium/citologia , Proteínas de Membrana/metabolismo , Microscopia de Fluorescência , Organismos Geneticamente Modificados/genética , Fenótipo , Proteínas de Protozoários/metabolismo , Reprodução , Esporos de Protozoários/citologia , Esporos de Protozoários/genética
7.
Science ; 333(6041): 467-70, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21700835

RESUMO

Free-living cells of the social amoebae Dictyostelium discoideum can aggregate and develop into multicellular fruiting bodies in which many die altruistically as they become stalk cells that support the surviving spores. Dictyostelium cells exhibit kin discrimination--a potential defense against cheaters, which sporulate without contributing to the stalk. Kin discrimination depends on strain relatedness, and the polymorphic genes tgrB1 and tgrC1 are potential components of that mechanism. Here, we demonstrate a direct role for these genes in kin discrimination. We show that a matching pair of tgrB1 and tgrC1 alleles is necessary and sufficient for attractive self-recognition, which is mediated by differential cell-cell adhesion. We propose that TgrB1 and TgrC1 proteins mediate this adhesion through direct binding. This system is a genetically tractable ancient model of eukaryotic self-recognition.


Assuntos
Adesão Celular , Dictyostelium/genética , Dictyostelium/fisiologia , Genes de Protozoários , Proteínas de Protozoários/metabolismo , Alelos , Sequência de Aminoácidos , Agregação Celular , Deleção de Genes , Dados de Sequência Molecular , Ligação Proteica , Esporos de Protozoários/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...